Teil 2: Neue KI-Geschäftsmodelle und maschinenerlerntes Sprachverständnis

 

Technologie führt zu neuen Geschäftsmodellen – ein erfolgreiches Beispiel

Rolf-Dieter Lafrenz und Tom Krause, CEO und CTO des innerhalb von SCHICKLER geborenen Start-ups cargonexx, gaben einen praxisbezogenen Einblick in das technologiebasierte Geschäftsmodell, die Entwicklung unter Unsicherheit und appellieren an den Mut der Unternehmer.

Cargonexx revolutioniert den LKW-Transport mit Künstlicher Intelligenz, wobei diese definiert wird als Kombination aus Automatisierung, Intelligenz und maschinellem Lernen. Das Geschäftsmodell reduziert die Transaktionskosten und erhöht die Auslastung der LKWs. Künstliche Intelligenz in Form von selbst-lernenden Algorithmen optimiert Touren, sagt Preise voraus und generiert auf Basis wachsender Daten ein intelligentes Transport-Netzwerk. Über die Plattform ergibt sich eine Win-Win-Situation für Verlader (bessere Preise, Zeitersparnis) und Frachtführer (mehr Umsatz, weniger Arbeit). Auch die Gesellschaft und die Umwelt profitiert: weniger Verkehr durch bessere Auslastung und eine Reduzierung des CO²-Ausstosses sind die Folge. Zukünftig ist gepaart mit autonom fahrenden LKWs sogar ein völlig autonomes Transport-Ökosystem möglich.

Wertvolle Hinweise, wie die Umsetzung von neuen Geschäftsmodellen mit Künstlicher Intelligenz kostenseitig nicht zu einem Fass ohne Boden werden, hatte Tom Krause für die Teilnehmer am Beispiel cargonexx parat.  Um Risiken einzuschränken sollten bewiesene Methoden und Ansätze aus dem Start-up-Umfeld wie z. B. die Lean-Methode zum Einsatz kommen. Mit dem Vorgehen „Build – Measure – Learn“ wird vorhandene Unsicherheit wissenschaftlich reduziert. Dazu entwickelt man definierte Hypothesen in kleinen Features (MVP = minimal viable product) um die Hypothese dann zu bestätigen. Entscheidend ist das Lernen und Adjustieren mit echten Kunden, denn der Erfolg hängt davon ab, ob der Kunde den gewünschten Mehrwert erzielt.

Die Strukturierung der Problemstellung und eine auf Automatisierung ausgerichtete Prozessanalyse waren die Grundlage für das Machine Learning bei cargonexx. Die Analyse der Probleme in der Prozesskette vom Verlader zum Frachtführer verknüpft mit den Anforderungen der Player liefert Informationen für die Automatisierungsansätze zur Problemlösung (z. B. zeitintensive Angebotserstellung, Preisvergleiche und Abwicklung). Über immer wieder automatisch neu strukturierte Entscheidungsbäume mit ständig wachsendem Dateninput lernt die Maschine z. B. Freikapazitäten und Preise vorherzusagen und trainiert bzw. verbessert sich mit jeder Entscheidung.

Rolf-Dieter Lafrenz stellte nach dem interessanten und tiefen Blick in die KI-Werkstatt auch fest, dass nicht jeder Entscheider dieses Wissenslevel erreichen muss – wichtig ist es, den Nutzen der Technologie zu verstehen. Denn nur die Technologie führt zu neuen Geschäftsmodellen und neuen Märkten. Er schloss mit dem Appell, mehr Mut zu zeigen, breiter zu denken und neue Geschäftsansätze auszuprobieren.

 

Know your Customer – das Verständnis der Sprache im Kontext

Prof. Dr. Heiko Beier, Geschäftsführer von der moresophy GmbH und Professor für Medienkommunikation setzt seinen Schwerpunkt auf Cognitive Computing und das echte Verstehen von Sprache und Kontext durch Künstliche Intelligenz.

Im Zuge der DSGVO wird deutlich, dass die Nutzung der persönlichen Daten des Kunden für Werbezwecke zunehmend schwierig wird. Die Alternative ist kontextbezogener Content, d.h. eine Nutzung der aktuellen Interessen des Users in Echtzeit. Ich treffe den User in einem Kontext mit dem er sich jetzt gerade beschäftigt – und es ist dafür keine Profilbildung oder Zustimmung notwendig.

Bedingung hierfür ist das Verständnis der Sprache und in welchem Kontext sie verwendet wird. SRA (Semantic Relevance Advertising) schafft es, anhand der Sprache und des Umfeldes dem User ein optimales Werbeangebot zu unterbreiten. Maschinen können heute dieses Verständnis zu lernen. Nicht nur das Wort, sondern die Bedeutung ist dabei entscheidend. Zusätzlich lernen die Algorithmen zu verstehen, was für die User wichtig ist und wie sie sich ausdrücken – hier liegt der Schlüssel. Dies stellt den feinen aber relevanten Unterschied zwischen einem einfachen Keyword und dem echten Verständnis der Sprache dar.

Einsatzbereiche sind z. B. in der automatisierten Dialogsteuerung im Service möglich. Das automatische Verstehen von Kundenkommunikation im richtigen Kontext ermöglicht zudem die Ausspielung von passenden Werbeangeboten in z. B. themenbezogenen Foren.

Fazit: KI kann durch das Verständnis von Sprache und Kontext perfekte Umfelder mit Echtzeit-User-Interesse identifizieren.

 

Historie, Perspektiven, Geschäftsmodelle, Methoden und Anwendungsmöglichkeiten – das SCHICKLER Strategieforum 2018 beleuchtete verschiedene Dimensionen des Themas Künstliche Intelligenz zum Thema. Vielen Dank an die Referenten und Teilnehmer – wir freuen uns auf das nächste Strategieforum 2019!